Photonic crystal membrane structures enable the realization of waveguides with tailored dispersion as well as nanocavities, which can be used to control and enhance light-matter interactions, with applications in integrated photonics and quantum information technology. Such structures can be used to design Photonic crystal switches, where the switching of an input signal depends on an optical control signal. The aim of our research is the realization of ultra-compact and integrated devices facilitating ultra-fast, low-energy optical signal processing.
SEM images of the fabricated PhC membrane structures. The scale bar corresponds to 2 micrometer.
We work on the following topics:
- Carrier dynamics in photonic crystal switches
- Fano switches
- Four-port photonic crystal switches
- Dual-resonances scheme for enhancing switching speed
- Modelling of Photonic crystal switches using coupled mode equations
Relevant NATEC papers:
M. Heuck, P. T. Kristensen, and J. Mørk, “Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches.”, Opt. Express 19 (2011).
P. T. Kristensen, C. Van Vlack, and S. Hughes, “Generalized effective mode volume for leaky optical cavities.”, Opt. Lett. 37, 1649–51 (2012).
Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, and J. Mørk, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure.”, Appl. Phys. Lett. 101 (2012).
M. Heuck, P. Kristensen, Y. Elesin, and J. Mork, “Improved Switching using Fano Resonances in Photonic Crystal Structures”, Opt. Lett. 38, 2466–2468 (2013).
M. Heuck, S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, S. Trillo, P. T. Kristensen, J. Mørk, J. P. Reithmaier, and A. De Rossi, “Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity.”, Appl. Phys. Lett. 103 (2013).
Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. T. Kristensen, S. Ek, D. Vukovic, C. Peucheret, L. K. Oxenløwe, S. Combrié, A. De Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: Experiment and theory.”, Opt. Express 21 (2013).
P. T. Kristensen, M. Heuck, and J. Mørk, “Optimal switching using coherent control.”, Appl. Phys. Lett. 102 (2013).
D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “All-optical 9.35 Gb/s wavelength conversion in an InP photonic crystal nanocavity.”, ACP/IPOC 2013. Optical Society of America (2013).
M. Heuck, P. T. Kristensen, Y. Elesin, and J. Mørk, “Improved switching using Fano resonances in photonic crystal structures.”, Opt. Lett. 38 (2013).
D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “Wavelength conversion of a 9.35-Gb/s RZ OOK signal in an InP photonic crystal nanocavity.”, IEEE Photon. Technol. Lett. 26 (2014).
M. Heuck, P. T. Kristensen, and J. Mork, “Dual-resonances approach to broadband processing beyond the carrier relaxation rate”, to Appear Opt. Lett. 39 (2014).
P. T. Kristensen and S. Hughes, “Modes and Mode Volumes of Leaky Optical Cavities and Plasmonic Nanoresonators”, ACS Photonics 1, 2–10 (2014).
Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. H. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching.”, arXiv:1404.7532.